{PDOC00494} {PS00571; AMIDASES} {BEGIN} ********************** * Amidases signature * ********************** It has been shown [1,2,3] that several enzymes from various prokaryotic and eukaryotic organisms which are involved in the hydrolysis of amides (amidases) are evolutionary related. These enzymes are listed below. - Indoleacetamide hydrolase (EC 3.5.1.-), a bacterial plasmid-encoded enzyme that catalyzes the hydrolysis of indole-3-acetamide (IAM) into indole-3- acetate (IAA), the second step in the biosynthesis of auxins from tryptophan. - Acetamidase from Emericella nidulans (gene amdS), an enzyme which allows acetamide to be used as a sole carbon or nitrogen source. - Amidase (EC 3.5.1.4) from Rhodococcus sp. N-774 and Brevibacterium sp. R312 (gene amdA). This enzyme hydrolyzes propionamides efficiently, and also at a lower efficiency, acetamide, acrylamide and indoleacetamide. - Amidase (EC 3.5.1.4) from Pseudomonas chlororaphis. - 6-aminohexanoate-cyclic-dimer hydrolase (EC 3.5.2.12) (nylon oligomers degrading enzyme E1) (gene nylA), a bacterial plasmid encoded enzyme which catalyzes the first step in the degradation of 6-aminohexanoic acid cyclic dimer, a by-product of nylon manufacture [4]. - Glutamyl-tRNA(Gln) amidotransferase subunit A [5]. - Mammalian fatty acid amide hydrolase (gene FAAH) [6]. - A putative amidase from yeast (gene AMD2). - Mycobacterium tuberculosis putative amidases amiA2, amiB2, amiC and amiD. All these enzymes contains in their central section a highly conserved region rich in glycine, serine, and alanine residues. We have used this region as a signature pattern. -Consensus pattern: G-[GAV]-S-[GS](2)-G-x-[GSAE]-[GSAVYCT]-x-[LIVMT]-[GSA]- x(6)-[GSAT]-x-[GA]-x-[DE]-x-[GA]-x-S-[LIVM]-R-x-P-[GSACTL] -Sequences known to belong to this class detected by the pattern: ALL. -Other sequence(s) detected in Swiss-Prot: NONE. -Last update: April 2006 / Pattern revised. [ 1] Mayaux J.-F., Cerebelaud E., Soubrier F., Faucher D., Petre D. "Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase." J. Bacteriol. 172:6764-6773(1990). PubMed=2254253 [ 2] Hashimoto Y., Nishiyama M., Ikehata O., Horinouchi S., Beppu T. "Cloning and characterization of an amidase gene from Rhodococcus species N-774 and its expression in Escherichia coli." Biochim. Biophys. Acta 1088:225-233(1991). PubMed=2001397 [ 3] Chang T.-H., Abelson J. "Identification of a putative amidase gene in yeast Saccharomyces cerevisiae." Nucleic Acids Res. 18:7180-7180(1990). PubMed=2263500 [ 4] Tsuchiya K., Fukuyama S., Kanzaki N., Kanagawa K., Negoro S., Okada H. "High homology between 6-aminohexanoate-cyclic-dimer hydrolases of Flavobacterium and Pseudomonas strains." J. Bacteriol. 171:3187-3191(1989). PubMed=2722746 [ 5] Curnow A.W., Hong K., Yuan R., Kim S., Martins O., Winkler W., Henkin T.M., Soll D. "Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation." Proc. Natl. Acad. Sci. U.S.A. 94:11819-11826(1997). PubMed=9342321 [ 6] Cravatt B.F., Giang D.K., Mayfield S.P., Boger D.L., Lerner R.A., Gilula N.B. "Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides." Nature 384:83-87(1996). PubMed=8900284 -------------------------------------------------------------------------------- PROSITE is copyrighted by the SIB Swiss Institute of Bioinformatics and distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0) License, see https://prosite.expasy.org/prosite_license.html -------------------------------------------------------------------------------- {END}