To improve security and privacy, we are moving our web pages and services from HTTP to HTTPS.
To give users of web services time to transition to HTTPS, we will support separate HTTP and HTTPS services until the end of 2017.
From January 2018 most HTTP traffic will be automatically redirected to HTTPS. [more...]
View this page in https
PROSITE documentation PDOC00073 [for PROSITE entry PS00076]

Pyridine nucleotide-disulphide oxidoreductases class-I active site





Description

The pyridine nucleotide-disulphide oxidoreductases are FAD flavoproteins which contains a pair of redox-active cysteines involved in the transfer of reducing equivalents from the FAD cofactor to the substrate. On the basis of sequence and structural similarities [1] these enzymes can be classified into two categories. The first category groups together the following enzymes [2,3,4,5,6]:

  • Glutathione reductase (EC 1.8.1.7) (GR).
  • Higher eukaryotes thioredoxin reductase (EC 1.8.1.9).
  • Trypanothione reductase (EC 1.8.1.12).
  • Lipoamide dehydrogenase (EC 1.8.1.4), the E3 component of α-ketoacid dehydrogenase complexes.
  • Mercuric reductase (EC 1.16.1.1).

The sequence around the two cysteines involved in the redox-active disulfide bond is conserved and can be used as a signature pattern.

Note:

In positions 6 and 7 of the pattern all known sequences have Asn-(Val/ Ile) with the exception of GR from plant chloroplasts and from cyanobacteria which have Ile-Arg [7].

Last update:

May 2004 / Text revised.

Technical section

PROSITE method (with tools and information) covered by this documentation:

PYRIDINE_REDOX_1, PS00076; Pyridine nucleotide-disulphide oxidoreductases class-I active site  (PATTERN)


References

1AuthorsKurlyan J., Krishna T.S.R., Wong L., Guenther B., Pahler A., Williams C.H. Jr., Model P.
SourceNature 352:172-174(1991).

2AuthorsRice D.W., Schulz G.E., Guest J.R.
TitleStructural relationship between glutathione reductase and lipoamide dehydrogenase.
SourceJ. Mol. Biol. 174:483-496(1984).
PubMed ID6546954

3AuthorsBrown N.L.
SourceTrends Biochem. Sci. 10:400-402(1985).

4AuthorsCarothers D.J., Pons G., Patel M.S.
TitleDihydrolipoamide dehydrogenase: functional similarities and divergent evolution of the pyridine nucleotide-disulfide oxidoreductases.
SourceArch. Biochem. Biophys. 268:409-425(1989).
PubMed ID2643922

5AuthorsWalsh C.T., Bradley M., Nadeau K.
TitleMolecular studies on trypanothione reductase, a target for antiparasitic drugs.
SourceTrends Biochem. Sci. 16:305-309(1991).
PubMed ID1957352

6AuthorsGasdaska P.Y., Gasdaska J.R., Cochran S., Powis G.
TitleCloning and sequencing of a human thioredoxin reductase.
SourceFEBS Lett. 373:5-9(1995).
PubMed ID7589432

7AuthorsCreissen G., Edwards E.A., Enard C., Wellburn A., Mullineaux P.
TitleMolecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.).
SourcePlant J. 2:129-131(1992).
PubMed ID1303792



PROSITE is copyright. It is produced by the SIB Swiss Institute Bioinformatics. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified. Usage by and for commercial entities requires a license agreement. For information about the licensing scheme send an email to
Prosite License or see: prosite_license.html.

Miscellaneous

View entry in original PROSITE document format
View entry in raw text format (no links)