To improve security and privacy, we are moving our web pages and services from HTTP to HTTPS.
To give users of web services time to transition to HTTPS, we will support separate HTTP and HTTPS services until the end of 2017.
From January 2018 most HTTP traffic will be automatically redirected to HTTPS. [more...]
View this page in https
PROSITE documentation PDOC50109 [for PROSITE entry PS50109]

Histidine kinase domain profile





Description

Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase (HK) and a response regulator protein (RR) (see <PDOC50110>). The HK, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the RR domain. Phosphorylation induces a conformational change in RR that results in activation of an associated domain that effects the response.

Both prokaryotic and eukaryotic HKs contain the same basic signaling components, namely a diverse sensing domain and a highly conserved kinase core that has a unique fold, distinct from that of the Ser/Thr/Tyr kinase superfamily. The overall activity of the kinase is modulated by input signals to the sensing domain. HKs undergo an ATP-dependent autophosphorylation at a conserved His residue in the kinase core. Autophosphorylation is a bimolecular reaction between homodimers, in which one HK monomer catalyzes the phosphorylation of the conserved His residue in the second monomer.

The sensing domains are variable in sequence, reflective of the many different environmental signals to which HKs are responsive, whereas the about 250-residue kinase core is more conserved. The kinase core is composed of a dimerization domain and an ATP/ADP-binding phosphotransfer or catalytic domain and can be identified by five conserved primary sequence motifs present in both eukaryotic and procaryotic HKs. These motifs have been termed the H, N, G1, F and G2 boxes. The conserved His substrate is the central feature in the H box, whereas the N, G1, F and G2 boxes define the nucleotide binding cleft. In most HKs, the H box is part of the dimerization domain. However, for some proteins, like CheA, the conserved His is located at the far N-terminus of the protein in a separate HPt domain. The N, G1, F and G2 boxes are usually contiguous, but the spacing between these motifs is somewhat varied. The catalytic core forms an α-β sandwich consisting of five antiparallel β strands and three α helices (see <PDB:1BXD>) [1,2,3].

The profile we developed covers the histidine kinase core.

Last update:

January 2002 / First entry.

Technical section

PROSITE method (with tools and information) covered by this documentation:

HIS_KIN, PS50109; Histidine kinase domain profile  (MATRIX)


References

1AuthorsStock A.M., Robinson V.L., Goudreau P.N.
TitleTwo-component signal transduction.
SourceAnnu. Rev. Biochem. 69:183-215(2000).
PubMed ID10966457
DOI10.1146/annurev.biochem.69.1.183

2AuthorsWest A.H., Stock A.M.
TitleHistidine kinases and response regulator proteins in two-component signaling systems.
SourceTrends Biochem. Sci. 26:369-376(2001).
PubMed ID11406410

3AuthorsFoussard M., Cabantous S., Pedelacq J.-D., Guillet V., Tranier S., Mourey L., Birck C., Samama J.-P.
TitleThe molecular puzzle of two-component signaling cascades.
SourceMicrobes Infect. 3:417-424(2001).
PubMed ID11369279



PROSITE is copyright. It is produced by the SIB Swiss Institute Bioinformatics. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified. Usage by and for commercial entities requires a license agreement. For information about the licensing scheme send an email to
Prosite License or see: prosite_license.html.

Miscellaneous

View entry in original PROSITE document format
View entry in raw text format (no links)