PROSITE logo

PROSITE documentation PDOC51108 [for PROSITE entry PS51108]
PTS EIID domain profile


Description

The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) [1,2] is a major carbohydrate transport system in bacteria. The PTS catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. The general mechanism of the PTS is the following: a phosphoryl group from phosphoenolpyruvate (PEP) is transferred to enzyme I (EI) of PTS which in turn transfers it to a phosphoryl carrier protein (HPr) (see <PDOC00318>). Phospho-HPr then transfers the phosphoryl group to a sugar-specific permease which consists of at least three structurally distinct domains (IIA, IIB, and IIC), [3] which can either be fused together in a single polypeptide chain or exist as two or three interactive chains, formerly called enzymes II (EII) and III (EIII).

The first domain (IIA) (see <PDOC00528>), carries the first permease-specific phosphorylation site, an histidine which is phosphorylated by phospho-HPr. The second domain (IIB) (see <PDOC00795>) is phosphorylated by phospho-IIA on a cysteinyl or histidyl residue, depending on the sugar transported. Finally, the phosphoryl group is transferred from the IIB domain to the sugar substrate concomitantly with the sugar uptake processed by the IIC domain. The IIC (see <PDOC51103>) domain forms the translocation channel and the specific substrate-binding site. An additional transmembrane domain IID, homologous to IIC, can be found in some PTSs, e.g. for mannose [1,3,4,5,6].

We have developed a profile for this domain, which cover the entire PTS EIID domain.

Last update:

April 2005 / First entry.

-------------------------------------------------------------------------------


Technical section

PROSITE method (with tools and information) covered by this documentation:

PTS_EIID, PS51108; PTS_EIID domain profile  (MATRIX)


References

1AuthorsPostma P.W. Lengeler J.W. Jacobson G.R.
TitlePhosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.
SourceMicrobiol. Rev. 57:543-594(1993).
PubMed ID8246840

2AuthorsMeadow N.D. Fox D.K. Roseman S.
TitleThe bacterial phosphoenolpyruvate: glycose phosphotransferase system.
SourceAnnu. Rev. Biochem. 59:497-542(1990).
PubMed ID2197982
DOI10.1146/annurev.bi.59.070190.002433

3AuthorsSaier M.H. Jr. Reizer J.
TitleProposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.
SourceJ. Bacteriol. 174:1433-1438(1992).
PubMed ID1537788

4AuthorsSaier M.H. Jr. Reizer J.
TitleThe bacterial phosphotransferase system: new frontiers 30 years later.
SourceMol. Microbiol. 13:755-764(1994).
PubMed ID7815935

5AuthorsTchieu J.H. Norris V. Edwards J.S. Saier M.H. Jr.
TitleThe complete phosphotranferase system in Escherichia coli.
SourceJ. Mol. Microbiol. Biotechnol. 3:329-346(2001).
PubMed ID11361063

6AuthorsSaier M.H. Hvorup R.N. Barabote R.D.
TitleEvolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators.
SourceBiochem. Soc. Trans. 33:220-224(2005).
PubMed ID15667312
DOI10.1042/BST0330220



PROSITE is copyrighted by the SIB Swiss Institute of Bioinformatics and distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0) License, see prosite_license.html.

Miscellaneous

View entry in original PROSITE document format
View entry in raw text format (no links)