{PDOC52064} {PS52064; UBM} {BEGIN} ************************************************ * Ubiquitin-binding motif (UBM) domain profile * ************************************************ Ubiquitin (Ub) plays a major role in regulating diverse biological pathways by changing the function, localization, or turnover of target proteins. Signaling through Ub is generally thought to occur by low-affinity noncovalent interactions between Ub and a variety of specialized Ub-binding domains (UBDs). UBDs can be classified into a number of different families, whose members share sequence and structural similarity only within the families, but not between them. The ubiquitin-binding motif (UBM) domain is an UBD that is present in Y-family polymerases iota (POLI) and REV1, both of which contain two UBMs at the C-terminus, the DNA repair protein XPG/ERCC5 (corresponding to budding yeast Rad2 and fission yeast Rad13) which contains a UBM domain and the RING-type ubiquitin ligase MULE/HUWE1 (corresponding to budding yeast Tom1) which contains three UBM copies. UBM domains bind any accessible ubiquitin interface in monoubiquitin or ubiquitin chains [1,2,3,4,5,6]. The UBM domain spans ~35 residues and consists of a helix-turn-helix motif where the first helix is longer than the second, and the turn is comprised of a highly conserved Leu-Pro motif that is poised for interaction with ubiquitin (see ) [3,4,5,6], The profile we developed covers the entire UBM domain. -Sequences known to belong to this class detected by the profile: ALL. -Other sequence(s) detected in Swiss-Prot: NONE. -Last update: June 2025 / First entry. [ 1] Bienko M., Green C.M., Crosetto N., Rudolf F., Zapart G., Coull B., Kannouche P., Wider G., Peter M., Lehmann A.R., Hofmann K., Dikic I. "Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis." Science 310:1821-1824(2005). PubMed=16357261; DOI=10.1126/science.1120615 [ 2] Hofmann K. "Ubiquitin-binding domains and their role in the DNA damage response." DNA Repair. (Amst). 8:544-556(2009). PubMed=19213613; DOI=10.1016/j.dnarep.2009.01.003 [ 3] Bomar M.G., D'Souza S., Bienko M., Dikic I., Walker G.C., Zhou P. "Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1." Mol. Cell. 37:408-417(2010). PubMed=20159559; DOI=10.1016/j.molcel.2009.12.038 [ 4] Cui G., Benirschke R.C., Tuan H.-F., Juranic N., Macura S., Botuyan M.V., Mer G. "Structural basis of ubiquitin recognition by translesion synthesis DNA polymerase iota." Biochemistry 49:10198-10207(2010). PubMed=21049971; DOI=10.1021/bi101303t [ 5] Suzuki N., Hiraki M., Yamada Y., Matsugaki N., Igarashi N., Kato R., Dikic I., Drew D., Iwata S., Wakatsuki S., Kawasaki M. "Crystallization of small proteins assisted by green fluorescent protein." Acta Crystallogr. D. Biol. Crystallogr. 66:1059-1066(2010). PubMed=20944239; DOI=10.1107/S0907444910032944 [ 6] Burschowsky D., Rudolf F., Rabut G., Herrmann T., Peter M., Wider G. "Structural analysis of the conserved ubiquitin-binding motifs (UBMs) of the translesion polymerase iota in complex with ubiquitin." J. Biol. Chem. 286:1364-1373(2011). PubMed=20929865; DOI=10.1074/jbc.M110.135038 -------------------------------------------------------------------------------- PROSITE is copyrighted by the SIB Swiss Institute of Bioinformatics and distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0) License, see https://prosite.expasy.org/prosite_license.html -------------------------------------------------------------------------------- {END}