PROSITE documentation PDOC00510Glycosyl hydrolases family 10 (GH10) active site and domain profile
View entry in original PROSITE document format
View entry in raw text format (no links)
PURL: https://purl.expasy.org/prosite/documentation/PDOC00510
The microbial degradation of cellulose and xylans requires several types of enzymes such as endoglucanases (EC 3.2.1.4), cellobiohydrolases (EC 3.2.1.91) (exoglucanases), or xylanases (EC 3.2.1.8) [1,2]. Fungi and bacteria produces a spectrum of cellulolytic enzymes (cellulases) and xylanases which, on the basis of sequence similarities, can be classified into families. One of these families is known as the cellulase family F [3] or as the glycosyl hydrolases family 10 (GH10) [4,E1,E2]. All family 10 xylanases hydrolyze the glycosidic bond in a double-displacement 'retaining' mechanism using two catalytic acidic residues, where one residue acts a nucleophile (base) and the other acts as a general acid/base [6.7]. The enzymes which are currently known to belong to this family are listed below.
- Aspergillus awamori xylanase A (xynA).
- Bacillus sp. strain 125 xylanase (xynA).
- Bacillus stearothermophilus xylanase.
- Butyrivibrio fibrisolvens xylanases A (xynA) and B (xynB).
- Caldocellum saccharolyticum bifunctional endoglucanase/exoglucanase (celB). This protein consists of two domains; it is the N-terminal domain, which has exoglucanase activity, which belongs to this family.
- Caldocellum saccharolyticum xylanase A (xynA).
- Caldocellum saccharolyticum ORF4. This hypothetical protein is encoded in the xynABC operon and is probably a xylanase.
- Cellulomonas fimi exoglucanase/xylanase (cex).
- Clostridium stercorarium thermostable celloxylanase.
- Clostridium thermocellum xylanases Y (xynY) and Z (xynZ).
- Cryptococcus albidus xylanase.
- Penicillium chrysogenum xylanase (gene xylP).
- Pseudomonas fluorescens xylanases A (xynA) and B (xynB).
- Ruminococcus flavefaciens bifunctional xylanase XYLA (xynA). This protein consists of three domains: a N-terminal xylanase catalytic domain that belongs to family 11 of glycosyl hydrolases; a central domain composed of short repeats of Gln, Asn an Trp, and a C-terminal xylanase catalytic domain that belongs to family 10 of glycosyl hydrolases.
- Streptomyces lividans xylanase A (xlnA).
- Thermoanaerobacter saccharolyticum endoxylanase A (xynA).
- Thermoascus aurantiacus xylanase.
- Thermophilic bacterium Rt8.B4 xylanase (xynA).
The overall structure of the GH10 domain corresponds to an eightfold α/ β-barrel (TIM-barrel) with a typical deep groove in the centre, allowing an 'endo' type of action on the large polysaccharide backbone (see <PDB:1R85>) [6,7].
One of the conserved regions in these enzymes is centered on a conserved glutamic acid residue which has been shown [5], in the exoglucanase from Cellulomonas fimi, to be directly involved in glycosidic bond cleavage by acting as a nucleophile. We have used this region as a signature pattern. We have also developed a profile that covers the entire GH10 domain.
Expert(s) to contact by email: Last update:June 2015 / Text revised; profile added.
-------------------------------------------------------------------------------
PROSITE methods (with tools and information) covered by this documentation:
1 | Authors | Beguin P. |
Title | Molecular biology of cellulose degradation. | |
Source | Annu. Rev. Microbiol. 44:219-248(1990). | |
PubMed ID | 2252383 | |
DOI | 10.1146/annurev.mi.44.100190.001251 |
2 | Authors | Gilkes N.R. Henrissat B. Kilburn D.G. Miller R.C. Jr. Warren R.A.J. |
Title | Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. | |
Source | Microbiol. Rev. 55:303-315(1991). | |
PubMed ID | 1886523 |
3 | Authors | Henrissat B. Claeyssens M. Tomme P. Lemesle L. Mornon J.-P. |
Title | Cellulase families revealed by hydrophobic cluster analysis. | |
Source | Gene 81:83-95(1989). | |
PubMed ID | 2806912 |
4 | Authors | Henrissat B. |
Title | A classification of glycosyl hydrolases based on amino acid sequence similarities. | |
Source | Biochem. J. 280:309-316(1991). | |
PubMed ID | 1747104 |
5 | Authors | Tull D. Withers S.G. Gilkes N.R. Kilburn D.G. Warren R.A.J. Aebersold R. |
Title | Glutamic acid 274 is the nucleophile in the active site of a 'retaining' exoglucanase from Cellulomonas fimi. | |
Source | J. Biol. Chem. 266:15621-15625(1991). | |
PubMed ID | 1678739 |
6 | Authors | Solomon V. Teplitsky A. Shulami S. Zolotnitsky G. Shoham Y. Shoham G. |
Title | Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. | |
Source | Acta Crystallogr. D 63:845-859(2007). | |
PubMed ID | 17642511 | |
DOI | 10.1107/S0907444907024845 |
7 | Authors | Han X. Gao J. Shang N. Huang C.-H. Ko T.-P. Chen C.-C. Chan H.-C. Cheng Y.-S. Zhu Z. Wiegel J. Luo W. Guo R.-T. Ma Y. |
Title | Structural and functional analyses of catalytic domain of GH10 xylanase from Thermoanaerobacterium saccharolyticum JW/SL-YS485. | |
Source | Proteins 81:1256-1265(2013). | |
PubMed ID | 23508990 | |
DOI | 10.1002/prot.24286 |
E1 | Title | https://www.uniprot.org/docs/glycosid |
E2 | Title | https://www.cazy.org/GH10.html |
PROSITE is copyrighted by the SIB Swiss Institute of Bioinformatics and distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0) License, see prosite_license.html.